matclustering.methods.hierarchical.mattree.metrics_evaluation namespace
Submodules
matclustering.methods.hierarchical.mattree.metrics_evaluation.eda module
MAT-Tools: Python Framework for Multiple Aspect Trajectory Data Mining
The present application offers a tool, to support the user in the clustering of multiple aspect trajectory data.It integrates into a unique framework for multiple aspects trajectories and in general for multidimensional sequence data mining methods. Copyright (C) 2022, MIT license (this portion of code is subject to licensing from source project distribution)
Created on Apr, 2024 Copyright (C) 2024, License GPL Version 3 or superior (see LICENSE file)
- Authors:
Tarlis Portela
Yuri Santos
- matclustering.methods.hierarchical.mattree.metrics_evaluation.eda.eda(dataset, feature, usr)[source]
Exploratory Data Analysis. It generates a plot bar of a given feature of a given dataset and a given user.
- Parameters:
usr (int)
dataset (pandas.DataFrame) – Dataset of trajectories of a given cluster.
feature (str) – Feature or Aspect intended for EDA.
usr – User label in a given cluster.
- matclustering.methods.hierarchical.mattree.metrics_evaluation.eda.eda_corr(dataset, usr)[source]
Exploratory Data Analysis. It generates a plot of correlation matrix of all features of a given dataset and a given user.
- Parameters:
dataset (pandas.DataFrame) – Dataset of trajectories of a given cluster.
user (int) – User label in a given cluster.
matclustering.methods.hierarchical.mattree.metrics_evaluation.entropy module
MAT-Tools: Python Framework for Multiple Aspect Trajectory Data Mining
The present application offers a tool, to support the user in the clustering of multiple aspect trajectory data.It integrates into a unique framework for multiple aspects trajectories and in general for multidimensional sequence data mining methods. Copyright (C) 2022, MIT license (this portion of code is subject to licensing from source project distribution)
Created on Apr, 2024 Copyright (C) 2024, License GPL Version 3 or superior (see LICENSE file)
- Authors:
Tarlis Portela
Yuri Santos
matclustering.methods.hierarchical.mattree.metrics_evaluation.freq_matrix module
MAT-Tools: Python Framework for Multiple Aspect Trajectory Data Mining
The present application offers a tool, to support the user in the clustering of multiple aspect trajectory data.It integrates into a unique framework for multiple aspects trajectories and in general for multidimensional sequence data mining methods. Copyright (C) 2022, MIT license (this portion of code is subject to licensing from source project distribution)
Created on Apr, 2024 Copyright (C) 2024, License GPL Version 3 or superior (see LICENSE file)
- Authors:
Tarlis Portela
Yuri Santos
- matclustering.methods.hierarchical.mattree.metrics_evaluation.freq_matrix.generate_freq_matrix(self, exclude_aspects=None)[source]
Method to generate the frequency matrix
- INPUT
- exclude_aspects: A list of aspects to exclude for clustering or a empty list to use all aspects.
e.g.: aspects_for_clustering = [] # use all aspects aspects_for_clustering = [‘day’, ‘weather’, ‘root_type’] # exclude aspects for fsny aspects_for_clustering = [‘data’, ‘idVotacao’, ‘parlamentar’] # exclude aspects for basometro
matclustering.methods.hierarchical.mattree.metrics_evaluation.sankey module
MAT-Tools: Python Framework for Multiple Aspect Trajectory Data Mining
The present application offers a tool, to support the user in the clustering of multiple aspect trajectory data.It integrates into a unique framework for multiple aspects trajectories and in general for multidimensional sequence data mining methods. Copyright (C) 2022, MIT license (this portion of code is subject to licensing from source project distribution)
Created on Apr, 2024 Copyright (C) 2024, License GPL Version 3 or superior (see LICENSE file)
- Authors:
Tarlis Portela
Yuri Santos
matclustering.methods.hierarchical.mattree.metrics_evaluation.similarity_matrix module
MAT-Tools: Python Framework for Multiple Aspect Trajectory Data Mining
The present application offers a tool, to support the user in the clustering of multiple aspect trajectory data.It integrates into a unique framework for multiple aspects trajectories and in general for multidimensional sequence data mining methods. Copyright (C) 2022, MIT license (this portion of code is subject to licensing from source project distribution)
Created on Apr, 2024 Copyright (C) 2024, License GPL Version 3 or superior (see LICENSE file)
- Authors:
Tarlis Portela
Yuri Santos
- matclustering.methods.hierarchical.mattree.metrics_evaluation.similarity_matrix.get_similarity_matrix(cls, dataset, sim_measure)[source]
Creates the distance matrix of the trajectories of a given cluster using the given similarity metric.
- Parameters:
dataset (pandas.DataFrame) – Dataset of trajectories of a given cluster
sim_measure (str) – Similarity metric [MUITAS, MSM, EDR, LCSS].
- Returns:
A dataframe of [MUITAS, MSM, EDR, LCSS] similarity metric.
- Return type:
pandas.DataFrame