matmodel.util package

Submodules

matmodel.util.filters module

MAT-Tools: Python Framework for Multiple Aspect Trajectory Data Mining

The present application offers a tool, to support the user in the modeling of multiple aspect trajectory data. It integrates into a unique framework for multiple aspects trajectories and in general for multidimensional sequence data mining methods. Copyright (C) 2022, MIT license (this portion of code is subject to licensing from source project distribution)

Created on Apr, 2024 Copyright (C) 2024, License GPL Version 3 or superior (see LICENSE file)

Authors:
  • Tarlis Portela

  • Vanessa Lago Machado

matmodel.util.filters.attributes2names(attributes_desc)[source]

Extracts the names (text field) of all attributes from the provided list of attribute descriptors.

Args:

attributes_desc (list):

List of attribute descriptors, each containing a ‘text’ field.

Returns:

list:

List of attribute names (strings).

matmodel.util.filters.names2indexes(sel_attributes, attributes_desc)[source]

Converts a list of selected attribute names into their corresponding indexes based on a provided list of attribute descriptors.

Args:

sel_attributes (list):

List of selected attribute names (strings).

attributes_desc (list):

List of attribute descriptors, each containing a ‘text’ field.

Returns:

list:

List of indexes corresponding to the selected attribute names within attributes_desc.

matmodel.util.parsers module

MAT-Tools: Python Framework for Multiple Aspect Trajectory Data Mining

The present application offers a tool, to support the user in the modeling of multiple aspect trajectory data. It integrates into a unique framework for multiple aspects trajectories and in general for multidimensional sequence data mining methods. Copyright (C) 2022, MIT license (this portion of code is subject to licensing from source project distribution)

Created on Apr, 2024 Copyright (C) 2024, License GPL Version 3 or superior (see LICENSE file)

Authors:
  • Tarlis Portela

  • Vanessa Lago Machado

matmodel.util.parsers.df2trajectory(df, data_desc=None, tid_col='tid', label_col='label')[source]

Convert a DataFrame to a list of Trajectory objects.

Parameters:

dfpandas.DataFrame

The DataFrame to be converted.

data_descstr, optional

The data descriptor file, a file path for the data descriptor JSON. If None, a descriptor is generated from the DataFrame (default None).

tid_colstr, optional

The name of the column representing trajectory IDs (default ‘tid’).

label_colstr, optional

The name of the column representing class labels (default ‘label’).

Returns:

list of Trajectory

The list of converted Trajectory objects.

DataDescriptor

The data descriptor object used for reading the dataset trajectories.

matmodel.util.parsers.json2movelet(file, name='movelets', count=0, load_distances=False)[source]

Parses a JSON movelets file and converts it into a list of Movelet objects.

Args:

file (file path / file object):

The JSON file containing movelet or shapelet data.

name (str, optional):

The key in the JSON file that holds the movelet data. Defaults to ‘movelets’.

count (int, optional):

An initial count for the movelets. Defaults to 0. Used for reading multiple files.

load_distances (bool, optional):

Whether to load the distances associated with the movelet. Defaults to False.

Returns:

list:

A list of Movelet objects parsed from the JSON file.

Example:

movelets = json2movelet(‘moveletsOnTrain.json’)

matmodel.util.parsers.normalize(df)[source]

Module contents